Pete Stafford, Executive Director

presentation to

The Association of Union Constructors (TAUC)
Greensboro, Georgia
May 8th, 2013
Background

CPWR – The Center for Construction Research and Training is a not-for-profit focusing on construction safety and health since 1990.

3 Major Construction Safety and Health Program Areas

- Research
- Training
- Medical Screenings
CPWR Program Areas Designed for Synergy

CPWR

Research Programs
NIOSH

Training Programs
NIEHS, DOL, DOE

Service Programs
DOL, DOE
NIOSH Construction Initiative

NIOSH and CPWR started the construction research program in 1990.

At that time, NIOSH was spending:

– $5 per worker in mining
– $2 per worker in general industry
– $0.06 per worker in construction
Today CPWR serves as the NIOSH-funded National Construction Research Center

CPWR openly competes for funding every 5 years, and currently in its 5th five-year cooperative agreement with NIOSH.

CPWR’s safety & health research budget is $5.5 million annually, and at any given time has between 15 and 20 construction research projects underway.
Construction Initiative con’t

50% of CPWR research funding support a network of collaborating institutions through sub-grants.

Collectively, current research areas include:

* Residential Falls
* Silica
* Welding Fumes
* Isocyanates
* Ergonomics
* Noise/Hearing Loss
* r2p

* Safety Culture/Incentives
* Overhead Drilling
* Nail Guns
* Disparities
* Training
* Data Tracking
* Green Construction
<table>
<thead>
<tr>
<th>Category</th>
<th>#</th>
<th>NORA Goals in Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready for Impact</td>
<td>6</td>
<td>Falls, Silica, Disparities, Struck by Culture, Prevention thru Design</td>
</tr>
<tr>
<td>Developmental</td>
<td>7</td>
<td>Electrocution, Welding Fumes, S&H Management, Surveillance, Noise, MSD, Training</td>
</tr>
<tr>
<td>Exploratory</td>
<td>2</td>
<td>Industry Organization, Engage the Media</td>
</tr>
</tbody>
</table>
Possible Research Topics of Interest to TAUC

• Safety Culture
 – June 11-12, 2013 CPWR-NIOSH/NORA Sector Council Workshop
 – DOE’s SCWE Training

• Performance Metrics

• Supervisory Safety & Health Training / OSHA 30

• Welding Fumes

• Others???
The Construction Chart Book

Topics: Fifth Edition, April 2013
Covers same topics, plus
• Displaced Workers – who returned to work, who didn’t
• Green Construction – which states, which trades getting work
• Exposure to Hazards by Trade – MSDs, noise, work at heights
• OSHA Enforcement/Citations – historical review
• Much more …
• April 25: www.cpwr.com
37a. Rate of fatalities in construction, selected countries, 2008

<table>
<thead>
<tr>
<th>Country</th>
<th>Rate per 100,000 workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>10.6</td>
</tr>
<tr>
<td>Italy</td>
<td>10.0</td>
</tr>
<tr>
<td>United States*</td>
<td>9.7</td>
</tr>
<tr>
<td>Canada</td>
<td>8.7</td>
</tr>
<tr>
<td>Finland^</td>
<td>5.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.8</td>
</tr>
<tr>
<td>Germany</td>
<td>5.0</td>
</tr>
<tr>
<td>Australia</td>
<td>4.4</td>
</tr>
<tr>
<td>Switzerland*</td>
<td>4.2</td>
</tr>
<tr>
<td>Norway</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Source: International Labour Organization.

Note: Data for Finland are for 2007. Countries marked with an asterisk (*) use FTEs to adjust rates.
37b. Rate of nonfatal injuries in construction, selected countries, 2008

<table>
<thead>
<tr>
<th>Country</th>
<th>Rate per 100 workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>10.8</td>
</tr>
<tr>
<td>Finland</td>
<td>7.7</td>
</tr>
<tr>
<td>Switzerland</td>
<td>7.0</td>
</tr>
<tr>
<td>Germany</td>
<td>5.1</td>
</tr>
<tr>
<td>Italy</td>
<td>3.8</td>
</tr>
<tr>
<td>Canada</td>
<td>2.4</td>
</tr>
<tr>
<td>Australia</td>
<td>1.7</td>
</tr>
<tr>
<td>United States</td>
<td>1.7</td>
</tr>
<tr>
<td>Norway</td>
<td>1.1</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Source: International Labour Organization.
Note: Data for Finland are for 2007. Countries marked with an asterisk (*) use FTEs to adjust rates.
38a. Number of fatalities, by major industry, 2010
(All employment)

Number of deaths

- Construction: 802
- Transportation: 689
- Agriculture: 624
- Wholesale & Retail: 503
- Manufacturing: 333
- Mining: 172
- Information: 45
- Utilities: 42
- Finance: 24

42a. Number of fatalities, selected construction occupations, 2008-2010 total (All employment)

Number of deaths

- Laborer: 630
- Foreman: 278
- Carpenter: 201
- Roofer: 181
- Electrician: 158
- Operating engineer: 124
- Construction manager: 120
- Truck driver: 106
- Painter: 105
- Plumber: 96
- Ironworker: 60
- Welder: 53
- Heat A/C mech: 50
- Brickmason: 41
- Power-line installer: 33
- Helper: 27
- Drywall: 18

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
44b. Distribution of fatalities from falls in construction, by establishment size, 2008-2010 total
(Wage-and-salary workers)

Total = 521 deaths

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
Rate of fatalities from falls, selected construction occupations, 2008-2010 average (All employment)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Deaths per 100,000 FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-line installer</td>
<td>28.5</td>
</tr>
<tr>
<td>Roofer</td>
<td>23.8</td>
</tr>
<tr>
<td>Ironworker</td>
<td>23.8</td>
</tr>
<tr>
<td>Sheet metal</td>
<td>6.5</td>
</tr>
<tr>
<td>Laborer</td>
<td>5.7</td>
</tr>
<tr>
<td>Welder</td>
<td>5.3</td>
</tr>
<tr>
<td>Brickmason</td>
<td>5.1</td>
</tr>
<tr>
<td>Painter</td>
<td>4.7</td>
</tr>
<tr>
<td>Foreman</td>
<td>4.0</td>
</tr>
<tr>
<td>Carpenter</td>
<td>3.6</td>
</tr>
<tr>
<td>Electrician</td>
<td>2.5</td>
</tr>
<tr>
<td>Drywall</td>
<td>2.3</td>
</tr>
<tr>
<td>Heat A/C mech</td>
<td>2.1</td>
</tr>
<tr>
<td>Plumber</td>
<td>1.4</td>
</tr>
<tr>
<td>Construction manager</td>
<td>1.1</td>
</tr>
<tr>
<td>All construction</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
44e. Causes of fatalities from falls in construction, 2008-2010 total (All employment)

Total = 891 deaths

- From roof (31.0%)
- From ladder (23.6%)
- From scaffold, staging (14.6%)
- From nonmoving vehicle (7.1%)
- From girder, struct. steel (6.7%)
- Fall to lower level, n.e.c. (6.1%)
- From floor, dock, ground level (4.9%)
- Other (6.1%)

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
45b. Number of electrocution deaths in construction, selected construction occupations, 2008-2010 total
(All employment)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrician</td>
<td>69</td>
</tr>
<tr>
<td>Laborer</td>
<td>41</td>
</tr>
<tr>
<td>Foreman</td>
<td>22</td>
</tr>
<tr>
<td>Power-line installer</td>
<td>17</td>
</tr>
<tr>
<td>Roofer</td>
<td>17</td>
</tr>
<tr>
<td>Heating</td>
<td>14</td>
</tr>
<tr>
<td>Painter</td>
<td>13</td>
</tr>
<tr>
<td>Plumber</td>
<td>13</td>
</tr>
<tr>
<td>Carpenter</td>
<td>9</td>
</tr>
</tbody>
</table>

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
45e. Overhead power-line electrocution deaths, by construction occupation, 2008-2010 total (All employment)

Total = 119 deaths

Construction laborer (23%)
Electrical worker (19%)
Foreman/manager (13%)
Roofer (13%)
Painter (9%)
Carpenter (5%)
Other trades (18%)

Source: Fatality numbers were estimated from the Census of Fatal Occupational Injuries. This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not necessarily reflect the views of the BLS. Calculations by CPWR Data Center.
Safety Management in Construction Research Study
Preliminary Results—April 2013

Safety Management in the Construction Industry: Identifying Risks and Reducing Accidents to Improve Site Productivity and Project ROI
National Survey

• Conducted by McGraw-Hill Construction
• December 13-19 2012
• 263 construction companies
Sample Characteristics

Type of Contractor
- 129 General Contractors (49%)
- 98 Specialty Contractors (37%)
- 16 Design-Build (6%)
- 16 Construction Management (6%)
- 4 Engineering firms (2%)

Size of Contractor
- 1-9 employees, 34 (13%)
- 10-49 employees, 76 (29%)
- 50-99 employees, 45 (17%)
- 100-499 employees, 58 (22%)
- >500 employees, 45 (17%)
<table>
<thead>
<tr>
<th>Practice</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include workers in safety process</td>
<td>81</td>
</tr>
<tr>
<td>Encourage workers to report hazards</td>
<td>77</td>
</tr>
<tr>
<td>Conduct regular S&H audits with foremen/workers</td>
<td>74</td>
</tr>
<tr>
<td>Appoint project safety personnel</td>
<td>72</td>
</tr>
<tr>
<td>Develop site-specific S&H plan</td>
<td>70</td>
</tr>
<tr>
<td>Site-specific training</td>
<td>63</td>
</tr>
<tr>
<td>Conduct near-miss investigations</td>
<td>60</td>
</tr>
<tr>
<td>Use job S&H analysis</td>
<td>54</td>
</tr>
<tr>
<td>Establish measurable S&H goals and objectives</td>
<td>52</td>
</tr>
<tr>
<td>Site-specific emergency action plan</td>
<td>50</td>
</tr>
<tr>
<td>Safety screening and procurement policy for selection of subcontractors</td>
<td>39</td>
</tr>
<tr>
<td>Track leading safety metrics (indicators)</td>
<td>32</td>
</tr>
<tr>
<td>Offer safety incentives</td>
<td>27</td>
</tr>
<tr>
<td>Include S&H planning in design process</td>
<td>27</td>
</tr>
</tbody>
</table>
1. Active dedication to sustainable work and development by the owner/client

• 63% say owners/clients should do more
2. Careful attention to safety, health and environment during the design, planning, procurement and construction phases, including the life-cycles of the structures

- Only 26% of general contractors and 8% of specialty contractors have been involved in safety and health planning during the design phase
3. Strong integration of safety and health staff in all aspects of the construction process

• 48% report using Building Information Modeling (BIM) throughout the construction cycle to identify and prevent potential hazards
4. Mandatory safety and health leadership training for all supervisors, and mandatory safety and health training for all workers

<table>
<thead>
<tr>
<th>Size</th>
<th>Mandatory Worker Training (10 hrs)</th>
<th>Mandatory Supervisor Training (30 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>33%</td>
<td>42%</td>
</tr>
<tr>
<td>10-49</td>
<td>51</td>
<td>59</td>
</tr>
<tr>
<td>50-99</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>100-499</td>
<td>50</td>
<td>81</td>
</tr>
<tr>
<td>>500</td>
<td>59</td>
<td>86</td>
</tr>
</tbody>
</table>
5. Empowerment of all workers to enforce safety and health, including strong support for young and vulnerable workers

- General Contractors, 86%
- Specialty Contractors, 62%
Types of Safety Practices
Developing Site Specific Health and Safety Plan (HASP) is Reported as the Most Effective Practice in Increasing Project Safety

Top Practices Found Most Effective in Increasing Project Safety

- **Develop Site Specific HASP (Health and Safety Plan)**: 25%
- **Analyze Potential Site Safety Hazards in Preconstruction**: 17%
- **Appoint/Assign/Authorize Project Safety Personnel**: 17%
- **Include Job Site Workers in Safety Process**: 13%
- **Conduct Regular Project Safety Audits with Foremen/Workers**: 7%

Firms also report safety practices that start in the preconstruction stage to be most effective.

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Influence Factors
A High Number of Factors are Driving Adoption of Current Safety Practices

- At least 50% report 10 different factors
- In addition to worker health and well-being, top drivers stem from concerns over project cost and schedule

- Concern About Worker Health and Well-Being: 79%
- Insurance Costs: 78%
- Liability Concerns: 77%
- Avoiding Potential Business Disruption: 65%
- Owner/Client Demand: 64%
- Regulatory Requirements: 63%
- Desire to Improve Productivity: 54%
- Past Incidents Involving Worker Health and Well-Being: 52%
- Industry Leadership in Overall Safety Culture: 51%
- Competitive Advantage: 50%

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Reduced Insurance Rates is the Primary Factor Encouraging Investment in Safety Management Practices

- Reduced insurance rates play significant role in bringing project costs down
- Clients more likely to seek contractors that control their risks through comprehensive safety management practices

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Communication and Education
Safety Training Impacts Those Most Directly Involved in Day-to-Day Construction Activities

Influence of Safety Training by Role at Contracting Firm

- **Foremen/Supervisors**
 - Somewhat Influential: 21%
 - Highly Influential: 64%
 - Total: 85%

- **Jobsite Workers**
 - Somewhat Influential: 20%
 - Highly Influential: 61%
 - Total: 81%

- **Project Management Team**
 - Somewhat Influential: 30%
 - Highly Influential: 47%
 - Total: 77%

- **Company Leadership**
 - Somewhat Influential: 21%
 - Highly Influential: 42%
 - Total: 63%

- **Estimators**
 - Somewhat Influential: 16%
 - Highly Influential: 15%
 - Total: 31%

Impact of training is also substantial for the project management team and company leadership, demonstrating the importance of engaging the company leadership in addition to encouraging safety on the ground.

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Firms Use and Value On-the-Job Training the Most

Level of Use and Value of Modes of Training for Jobsite Workers

- **On-The-Job Training**: 95% use and 82% consider to be of great value.
- **Classroom Training**: 89% use and 52% consider to be of great value.
- **Authorized Jobsite Workers**: 86% use and 52% consider to be of great value.
- **Online/eLearning**: 76% use and 26% consider to be of great value.

- Large firms use and value classroom training significantly more than small firms, which are much more likely to outsource training.

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Large Firms Offer Training to Jobsite Workers More Frequently

Frequency of Formal Safety Training for Jobsite Workers

- Once a Quarter or More:
 - Small Firms: 18%
 - Medium Firms: 34%
 - Large Firms: 51%

- Twice a Year:
 - Small Firms: 15%
 - Medium Firms: 23%
 - Large Firms: 22%

- Annually:
 - Small Firms: 27%
 - Medium Firms: 28%
 - Large Firms: 22%

- Only When First Hired:
 - Small Firms: 9%
 - Medium Firms: 4%
 - Large Firms: 8%

- Only When Required:
 - Small Firms: 24%
 - Medium Firms: 11%
 - Large Firms: 10%

Large firms typically assume greater risk and liability than small firms and thus have a greater interest in emphasizing safety training.

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Toolbox Talk and Training are Most Effective Ways of Communicating About Safety

Most Effective Means of Communicating About Safety With Employees

- **Toolbox Talks**: 41%
- **Training**: 38%
- **Chain of Command**: 13%
- **Flyers with Paychecks**: 4%
- **Email Alerts**: 2%
- **Text Alerts**: 1%
- **Newsletter**: 1%

Direct forms of communication are considered far more effective, allowing workers to ask questions and avoid misinformation.

Source: McGraw-Hill Construction, Safety Management in the Construction Industry research study, April 2013 (SmartMarket Report to be published June 2013)
Know the Hazard

Workers may be exposed to dangerous levels of silica dust when cutting, drilling, grinding, or otherwise disturbing materials that contain silica. These materials and tasks are common on construction jobs. Breathing that dust can lead to serious, often fatal illnesses. This section contains information that workers—and contractors—need to know to recognize the hazard, understand the risk factors, and work safely with silica.

Control the Dust

There are ways contractors can reduce the dust and reduce the hazard. This easy to use planning tool takes you step-by-step through conducting a job hazard analysis for silica, selecting appropriate controls, and creating a job-specific plan to eliminate or reduce silica hazards. You can save as a pdf, print and/or email your plan.

CREATE-A-PLAN

Training & Other Resources

Find silica-related handouts, fact sheets, videos, toolbox talks and other resources for workers and contractors.

What's Working

Contractors, workers, manufacturers, and researchers are on the lookout for the best ways to control silica dust. Learn what is happening in the field and share what you are doing.

Ask a Question

Get answers to commonly asked questions about silica and ask one of your own.
Select Work Activity:

- Carpentry
- Drywall, Glass & Floor Coverings
- Electrical
- Excavation & Demolition
- General Labor
- Heavy Equipment
- Insulation & Lagging
- Masonry, Tile, Cement & Plaster
- Paints & Coatings
- Pipes & Vessels
- Reinforced Concrete
- Residential Construction
- Roofing
- Sheet Metal & HVAC
- Structural Steel

Designed for owners, contractors, and workers, Construction Solutions is a database of information on health hazards, and practical control measures to reduce or eliminate those hazards. The information has been compiled from public sources including published research findings.
Falls are the #1 cause of work-related deaths in construction and a leading cause of injuries. They can be prevented. Plan. Provide. Train.

Construction Fatalities in the USA, 2011

Click on the map image above to access interactive maps and related information.

In January of 2011, CPWR – The Center for Construction Research and Training began collecting data on occupational fatalities in the construction industry as part of a national fall prevention campaign. The purpose of this mapping project is to raise awareness of the number of lives lost each year on construction sites in the U.S.

About the Campaign

- Who We Are
- What's New
- Get Involved!
- Press

CPWR’s Don’t Fall For It!

Training & Other Resources

Learn More
22,808 Hazard Alert cards distributed

"B-SAFE [safety recognition and communication program] increased the level of awareness around safety"
TRAINING
Training Programs offered by CPWR

Worker Level Courses

- 40-Hour Hazardous Waste Worker
- 24-Hour Hazardous Waste Worker
- 8-Hour Hazardous Waste Worker Refresher
- 16-Hour Confined Space
- 32-Hour Lead Worker*
- 8-Hour Lead Worker Refresher*
- 40-Hour Lead Supervisor*
- 8-Hour Lead Supervisor Refresher*
- 8-Hour Lead Renovation, Repair, and Painting (RRP)*
- 32-Hour Asbestos Worker*
- 8-Hour Asbestos Worker Refresher*
- 40-Hour Asbestos Supervisor*
- 8-Hour Asbestos Supervisor Refresher*

Instructor Level Courses

- OSHA 500
- OSHA 502
- OSHA 510
- 40-Hour Combination, Train-The-Trainer
- 40-Hour Confined Space Train-The-Trainer
- 24-Hour Trainer Enhancement

* Lead and asbestos training available in select states only
69,355 WORKERS TRAINED – OSHA 10 OR OSHA 30

"The instructors seemed to have a very good understanding of the..."
ACCSH Recommendations on OSHA 10

Eliminate Requirement for 2-Hour Introductory Module

OSHA Conduct a Third Party Assessment of the Entire OTI Program for Construction
OSHA
ACCSH Workgroups

* I2P2 (Procurement Document)
* Women / Diversity
* Training & Outreach
* Backing Operations
* Health Hazards/Emerging Issues/PtD
* Surveillance/Targeting/Enforcement
* OTI Policy Changes
 - Overall Program Assessment
 - Training Curriculum Modifications
Other OSHA Regulatory Issues

• Crane & Derrick Standard - Operator Certification

• Program Standard

• SIPS IV

• Employer Participation on ACCSH
PROGRAM ELEMENTS OF A PROPOSED PILOT PRE-PLACEMENT/WELLNESS PROGRAM
March 2012: Labor-Management Task Force Assigned

March – August 2012: Task Force holds a series of meetings/calls to develop pilot program elements. Proposed elements are reviewed by BCTD S&H Committee at regularly scheduled meetings.

September 2012: BCTD S&H Committee recommends the proposed pilot go to GPPMA Committee for review.

October – November 2012: Project put on hold.

December 2012: A joint meeting of the Task Force, BCTD S&H Committee and GPPMA Committee was held to review status and address concerns/questions.

January 2013: Pilot proposal modified for presentation to the Governing Board of Presidents.
Three Components

- Wellness: aimed at providing the employees with information about their health status, which will be exchanged only between the employee and the physician;

- Screening for limited serious medical conditions: aimed at detecting conditions that may cause sudden incapacitation; and

- Physical assessment: aimed at ensuring appropriate job placements.
Common Elements

➢ The program will be administered by a third party medical provider.

➢ The third party provider will administer written medical questionnaires for both the wellness and pre-placement functional assessment and conduct the limited physical exam.

➢ The information the employees disclose to the third party medical provider is confidential.
Wellness Component:

a. The health assessment will include a written Health Risk Appraisal, and screens for blood pressure and glucose.

b. The purpose of the health assessment is primarily to provide employees with information about their health status.

c. The third-party provider will report no individually-identifiable results to the employer.
Pre-Placement Functional Assessment:

a. The purpose of the functional assessment is to identify people who have a limited number of significant medical conditions or severe limitations in their physical abilities that might put them at risk.

b. The employer will provide the third-party medical provider with job descriptions that are tailored to the specific job that each employee will be assigned to perform, on that particular jobsite.
Pre-Placement Functional Assessment (con’t):

c. The functional assessment will consist of certain specified items on the medical questionnaire and a limited physical examination, to include:

- Making a fist;
- Spreading fingers;
- Reaching hands over shoulders;
- Standing on toes;
- Standing on heels;
- Squatting
d. Based on the medical questionnaire and the physical exam, the medical provider will make a recommendation to the employer that the worker is either fit to perform all anticipated duties of the job assignment or may have limitations to be accommodated, i.e., shouldn’t climb a ladder or crawl into confined spaces.
Pre-Placement Functional Assessment (con’t):

e. The medical provider will not disclose any medical information or diagnoses to the employer. Instead, the information the medical provider gives the employer will be limited to whether the employee:

i. Can perform his or her job duties without accommodations;

ii. Can perform his or her job duties with accommodations listed by the medical provider; or

iii. Is unable to perform his or her job duties.